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ONE SINGULARLY PERTURBED PROBLEM

OF TURBULENT GAS DYNAMICS

UDC 533.6.011.72A. V. Omel’chenko and É. A. Tropp

The problem of the interaction of a Prandtl–Mayer wave with a shear layer is solved using the small
parameter method for the case where the flow vorticity in the shear layer is small. A direct expansion
is constructed and its inadequacy at large distances from the vortex layer is proved. The strained
coordinate method is used to obtain a uniformly adequate expansion. It is shown that for certain
velocity distributions in the shear layer, the characteristics in the reflected simple wave resulting
from the interaction intersect each other and a shock arises in the flow. There coordinates of the
shock origin and the function describing the shock shape are obtained.
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Introduction. The interaction of a simple wave with a shear layer is encountered in descriptions of super-
sonic jet flows [1, 2], interactions of shocks with simple waves [3, 4], and in problems of exterior aerodynamics [5, 6].
From the viewpoint of wave classification, a shear layer is a degenerate simple wave [7]; therefore, the problem at
hand is a problem of simple-wave interaction.

Traditionally, the interaction of simple waves has been studied with the use of group analysis [7–9]. However,
exact analytical solutions of such problems are possible only in exclusive cases — an exact solution cannot be
obtained even to the problem of the interaction of Prandtl–Mayer simple waves [7]. In this connection, of great
significance are approximate methods for solving similar problems, the main of which is asymptotic small-parameter
expansion [10, 11].

The small-parameter method has been used to solve the problem of simple-wave interaction in many papers
(see, e.g., [11–18]). In most of them, the flow was considered isentropic and the trivial solution u = const was used
as the zero approximation.

In the problem considered, the small parameter is the flow vorticity in the shear layer. In the zero ap-
proximation, a simple wave solution is used. The unboundedness of the interaction region is responsible for the
nonuniformity the direct expansion. A uniformly adequate expansion is constructed using the strained coordinate
method [10, 11].

1. Formulation of the Problem. The interaction of an isentropic centered rarefaction wave 1 with a
vortex (shear) layer 2 of finite thickness (see Fig. 1) is considered using the ideal perfect gas model. The flow in the
interaction region is described by the Euler equations. It is convenient to pass from this system to the extended
system [19]; for the case of a planar supersonic flow, it has the form
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Fig. 1. Diagram of interaction of a centered rarefaction wave with a vortex layer.

∂ϑ

∂x
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∂M
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µ
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.

Here M is the Mach number, ϑ is the slope of the velocity vector to the abscissa, α = arcsin (1/M), and γ is the
adiabatic exponent;

Z =
M2 − 2

2A2

µ

(1 + ε)M3 ; ψ =
1

2(1 + ε)M2A
; µ = 1 + εA2; A =

√
M2 − 1 ; ε = (γ − 1)/(γ + 1).

In (1.1), the functions

P1,2 =
∂ ln p
∂y

± Γ(M)
∂ϑ

∂y
, P3 =

∂ ln p
∂y

+
(1 + ε)M2

µ

∂ lnM
∂y

characterize the intensity of the small perturbations propagating along the characteristics of the first (P1) and
second (P2) families and along the streamlines (P3). Thus, in the simple Prandtl–Mayer wave, P2 = P3 = 0, and

P1 =
2(1 + ε)

√
M2 − 1 cos2(ϑ+ α)
x− c

. (1.2)

The constant c changes in passage from one characteristic of the first family to another. In the centered wave, this
quantity is constant throughout the wave and is equal to the abscissa x0 of the center (x0, y0) of the wave.

In addition, from (1.1) it follows that

dϑ

dν3
+

(1− ε)
√

M2 − 1
µ

d lnM
dν3

=
dϑ

dν3
+
dω(M)
dν3

= 0,

where ω(M) is the function calculated by the formula

ω(M) = (1/
√
ε) arctan

√
ε(M2 − 1)− arctan

√
M2 − 1.

Hence, throughout the wave, the following relation is valid:

ϑ+ ω(M) = ϑ1 + ω(M1). (1.3)

Here ϑ1 and M1 are the values of these variables on an arbitrary characteristic of the first family.
For the centered wave, it is convenient to convert to polar coordinates (r, ϕ) with origin at the center of the

wave. In this coordinate system, the polar angle ϕ is linked to the Mach number M and the slop ϑ of the streamline
in the wave by the relation

ϕ = ϑ+ α = ϑ+ arcsin (1/M) = ϑ1 + ω(M1)− ω(M) + arcsin (1/M),
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which, in view of the equality

arcsin (1/M) + arctan
√

M2 − 1 = π/2

can be written as

ϕ = −ω̃(M) + C1, ω̃(M) = (1/
√
ε ) arctan

√
ε(M2 − 1),

C1 = ϑ1 + arcsin (1/M1) + ω̃(M1) = ϕ1 + ω̃(M1).
(1.4)

Solving (1.4) for the Mach number, we obtain the explicit form of the function M(ϕ) in the centered wave:

M(ϕ) =
√

(1/ε) tan (
√
ε [C1 − ϕ])2 + 1. (1.5)

Using the dependence (1.5), it is east to write the functions rl(ϕ) and rh(ϕ) describing the streamline shape and
the characteristics of the second family in the centered wave. Indeed, from geometrical reasons it follows that

rldϕ

drl
= − cot α = −A, rhdϕ

drh
= − cot 2α = −A

2 − 1
2A

, A :=
√

M2 − 1.

Integration of these equalities yields the following expressions for the streamline and the characteristic of the second
family that passes through the point with the coordinates (r1, ϕ1):

rl(ϕ) = r1

[ µ(M(ϕ))
µ(M(ϕ1))

]1/2ε

, rh(ϕ) = r1
R(M)
R(M1)

, R(M) =

√
µæ

A
. (1.6)

The shear layer 2, in which P3 6= 0 and P1 = P2 = 0, is a degenerate simple wave, according to the
classification of [8]. Indeed, as can be seen from (1.1), the conditions P1 = P2 = 0 imply that in this wave p = const
and ϑ = const, i.e., this wave represents isobaric motion in which all characteristics of the third kind (streamlines)
are straight lines parallel to one another. Because the derivatives d lnM/dν3 and dP3/dν3 are equal to zero in this
wave, the functions P3 and M do not vary along the streamlines.

Let us introduce Cartesian coordinates with origin at the point O and the x axis parallel to the streamlines
of the incoming flow. In this case, the equality dP3/dν3 = 0 implies that the functions P3 and M in the shear layer
depend only on y and are related by the formula

P3(y) =
(1 + ε)M2(y)

µ(y)
d lnM(y)

dy
=
d lnµæ(y)

dy
, (1.7)

which allows one to determine the function µ(y) from the given P3 = P3(y):

µ(y) = µ(y1) exp

y∫
y1

P3(y) dy.

Let us describe the interaction of the centered Prandtl–Mayer wave 1 with the shear layer 2 (see Fig. 1).
Before the interaction, the shear layer 2, bounded by the weak tangential discontinuities Q1A1 and Q2A2, moves
parallel to the wall. At the point O, a break of the surface occurs, resulting in the centered Prandtl–Mayer wave 1
bounded by the weak discontinuities OA1 and OB1.

The intersection of the weak discontinuity OA3 with the weak horizontal discontinuitiesQ1A1 andQ2A2 leads
to the formation of the outgoing weak discontinuities A1C1 and A2C2, respectively. At the points B1 and B2, the
weak horizontal discontinuities A1B1 and A2B2 intersect the weak discontinuity OB1B2 closing the Prandtl–Mayer
wave, leading to the formation of the weak discontinuities B1D1 and B2D2. Thus, on the left, the interaction region
is bounded by the weak discontinuity OA3, which is a continuation of the weak discontinuity OA1 separating the
uniform flow and the Prandtl–Mayer wave; from below, the interaction region is bounded by the weak discontinuity
A1F1C1 issuing from the point A1 of intersection of the weak discontinuities OA1 and Q1A1.

Along the characteristic OA3, the slope ϑ of the velocity vector to the x axis and the function P2 are equal to
zero and the Mach number distribution depends only on y. On the segments OA1 and A2A3, the function M(y) is
constant and equal to the Mach numbers M1 and M2 under and above the shear layer 2, and on the segment A1A2,
this function is determined by the specified flow vorticity P3(y) [formula (1.7)]. The shape of the characteristic
of the first family OA3 is easily found from the known function M(y) using the relation dy/dx = tanα(y) [α =
arcsin (1/M)].

189



At the weak discontinuity OA3, the function P1 has a jump: this function is equal to zero to the left of OA3

and is different from zero to the right of it. On the segment OA1 in the coordinate system with origin at the point
O, the function P1 is defined by formula (1.2)

P1 =
2(1 + ε)A(M1) cos2 α(M1)

x
=

2(1 + ε)A3(M1)
M2

1x
,

and on the segment A1A2, it is described by the first-order partial differential equation resulting from (1.1):

∂P1

∂x
+

1
A(M(y))

∂P1

∂y
= a2(y)P 2

1 + a1(y)P1,

a1(y) =
µ(M(y))(3M2(y)− 2)P3(y)

2(1 + ε)M2(y)A3(M(y))
, a2(y) = − M2(y)

2(1 + ε)A3(M(y))
.

The solution of the latter equation has the form

P1(x, y) =
2(1 + ε)M(y)

√
A(M(y))

M3
1A

−5/2(M1)(x− F0(y)) + g(y)
,

where

F0(y) =

y∫
y0

A(M(y)) dy, g(y) =

y∫
y0

[ M(y)√
A(M(y))

]3

dy

[y0 is the ordinate of the point A1 (see Fig. 1)]. Because along A1A2,

x = x0 +

y∫
y0

A(M(y)) dy = x0 + F0(y),

then on the characteristic A1A2, we have

P1(y) =
2(1 + ε)M(y)

√
A(M(y))

M3
1A

−5/2(M1)x0 + g(y)
.

Finally, above the point A2, the function P1 is given by the relation

P1 =
2(1 + ε)A3(M2)

M2
2(x+ c)

, c =
2(1 + ε)A3(M2)

M2
2P1(xa)

− xa,

where xa is the abscissa of the point A2.
To describe the gas-dynamic functions on the lower boundary A1F1C1 of the interaction region, we use a

polar coordinate system with origin at the point O. In this system, the shape of the characteristic of the second
family A1F1 in the wave 1, the distribution of the Mach number M(ϕ) [formula (1.5)], and the angle ϑ [formula
(1.3)] along this characteristic are found from the angle ϕ from the given range [ϕ1, ϕ2], ϕ1 = arcsin (1/M1) using
formula (1.6).

The weak tangential discontinuities A1B1 and A2B2 issuing from the points A1 and A2 separate the region
in which P3 = 0 from the region in which P3 6= 0. However, the latter region is no longer a shear layer because in
it, not only the function P3 but also the functions P1 and P2 are different from zero. In the following, this region
with variable entropy is called a vortex layer.

The interaction of the vortex layer with the weak discontinuity OB3 results in an abrupt change in the
function P1. In this case, behind the segment F1B1 and behind the characteristic OF1 closing the simple wave 1,
the function P1 vanishes, and behind the segment B1B3, this function is different from zero. Physically, this is
explained by the presence of weak perturbations propagating from the region A1A2B2B1 and interacting with
the vortex layer located behind B1B2. This interaction results in higher-order weak perturbations arising in the
vortex region behind B1B2 and propagating along the characteristics of the first kind. Since the intensity of these
perturbations is characterized by P1, this function is different from zero above the discontinuous streamline issuing
from the point B1.

Similarly, it is shown that in the region bounded from above by the streamline issuing from the point B2

and on the left by the characteristic F1C1, the function P2 is different from zero. Thus, the interaction of the wave
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with the shear layer results in the formation of vortex layer bounded by the streamlines issuing from the points B1

and B2, the simple wave bounded on the left and from below by the characteristic B2B3 and the streamline issuing
from the point B2, and the simple wave bounded on the left and from above by the characteristic F1C1 and the
streamline issuing from the point B1.

The above pattern takes place until the weak discontinuity A1F1C1 reaches the rigid wall bounding the flow in
question from below. The reflection results in the formation of perturbations propagating along the characteristics
of the first family and overtaking the vortex layer. In addition, in the wave C1F1B1D1 both rarefaction and
compression of the flow can occur. In the latter case, the occurrence of a shock due to the intersection of neighboring
characteristics in the wave is possible.

Generally, the problem of the interaction of a shear layer with a simple wave has no analytical solutions. The
main objective of the present study is to construct analytical solutions by asymptotic small-parameter expansion
for the case of small flow vorticity in the shear layer.

2. Constructing Direct Expansion. We introduce the parameter

δ = max
y
|M(y)−M1|/M1,

which characterizes the flow vorticity in the shear layer 2. Assuming that the flow vorticity is small, we shall attempt
to construct an analytical solution of the interaction problem by asymptotic expansion of the functions included in
(1.1) in the small parameter δ:

f =
∞∑

k=0

δk f (k), δ → 0, f ∈ {A, ϑ, P1, P2, P3}. (2.1)

In the zero approximation, system (1.1) describes the flow in the centered Prandtl–Mayer wave, in which
P

(0)
2 = P

(0)
3 = 0, the function P

(0)
1 is defined by formula (1.2), and ϑ(0) and M(0) are linked to the Mach number

M1 in the uniform flow before the wave 1 and to the polar angle ϕ by relations (1.5) and (1.3), respectively.
To obtain the first approximation, we shall convert to polar coordinates in system (1.1), substitute series (2.1)

into (1.1), and retain terms at δ1. As a result, for the functions f (1), we obtain

∂P
(1)
3

∂ϕ
− r cot (ϕ− ϑ(0))

∂P
(1)
3

∂r
= α13(ϕ)P (1)

3 ,

∂P
(1)
2

∂ϕ
− r cot (ϕ+ α(0) − ϑ(0))

∂P
(1)
2

∂r
= α22(ϕ)P (1)

2 + α23(ϕ)P (1)
3 ,

D(1)

r
+

1
ν(ϕ)

∂ϑ(1)

∂r
= −α32(ϕ)P (1)

2 , D(1) = ϑ(1) − A(1)

(M(0))2
, (2.2)

D(1)

r
+

1
µ(ϕ)

∂A(1)

∂r
= α32(ϕ)P (1)

2 + α33(ϕ)P (1)
3 ,

D(1)

r

∂P
(0)
1

∂ϕ
+
∂P

(1)
1

∂r
= α41(ϕ) + α42(ϕ)P (1)

2 + α43(ϕ)P (1)
3 + α44(ϕ)ϑ(1) + α45(ϕ)A(1).

As the initial system (1.1), system (2.2) is written in invariants [19]. In addition, the matrix of the right side
of (2.2) is triangular. These circumstances allow us to obtain an analytical solution of system (2.2) by sequentially
solving the inhomogeneous linear first-order partial differential equation included in it for the functions P (1)

3 , P (1)
2 ,

ϑ(1), A(1), and P (1)
1 .

Indeed, in the centered wave, the Mach number M(0) and the angle ϑ(0) are uniquely expressed in terms of
the polar angle ϕ. Therefore, the first equation of system (2.2) can be written as

∂P
(1)
3

∂ϕ
+ ra(ϕ)

∂P
(1)
3

∂r
= P

(1)
3 F (ϕ). (2.3)

For (2.3), the following Cauchy problem is formulated: to find the surface passing through the curve

ϕ = ϕ0, P
(1)
3 = f(r).
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The solution of this problem can be written in explicit form:

P
(1)
3 = Ψ(ϕ)f

( r

B(ϕ)

)
, B(ϕ) = exp

ϕ∫
ϕ0

a(ϕ) dϕ, Ψ(ϕ) = exp

ϕ∫
ϕ0

F (ϕ) dϕ. (2.4)

The known form of the function P (1)
3 allows us to obtain an analytical expression for P (1)

2 . Using the notation
z = P

(1)
2 , b(ϕ) = − cot (ϕ+ α(0) − ϑ(0)), for the second equation in (2.2) we write the characteristic system

dϕ

1
=

dr

rb(ϕ)
=

dz

α1(ϕ) z + α2(ϕ) Ψ(ϕ) f(r/B(ϕ))
.

One general integral of this system is easy to find:

r

D(ϕ)
= C1, D(ϕ) = exp

ϕ∫
ϕ0

b(ϕ) dϕ.

To obtain the second integral, it is necessary to solve the equation

z′ = α1(ϕ)z + α2(ϕ)Ψ(ϕ)f(r/B(ϕ)) = α1(ϕ)z + α2(ϕ)Ψ(ϕ)f(C1D(ϕ)/B(ϕ)).

The general solution of the homogeneous equation is written as

z0 = C0 exp

ϕ∫
ϕ0

α1(ϕ) dϕ =: C0A1(ϕ).

We seek a solution in the form z = C(x)A1(ϕ). It is easy to show that in this case, the function

C(x) =

ϕ∫
ϕ0

α2(ϕ)
A1(ϕ)

Ψ(ϕ)f
(C1D(ϕ)

B(ϕ)

)
dϕ+ C2 =: Φ(ϕ,C1) + C2.

Hence, the general solution is given by

z = A1(ϕ)g̃(ϕ)(r/D(ϕ)) +A1(ϕ)Φ(ϕ, r/D(ϕ)).

Here g̃ is an arbitrary function of the argument. We are interested in the solution that vanishes for ϕ = ϕ0. Since
for such ϕ, the function Φ = 0 and A1(ϕ) = 1, then g̃ ≡ 0. Therefore, the solution of the Cauchy problem has the
form

z = A1(ϕ)Φ(ϕ, r/D(ϕ)). (2.5)

Let us now define the functions A(1) and ϑ(1). It is to show that the third and fourth equations of system
(2.2) can be written as

A(1) = µ(0)E(r, ϕ)− µ(0)

ϕ(0)
ϑ(1),

1
r
ϑ(1) +

∂ϑ(1)

∂r
=
G̃(r, ϕ)

r
.

Integration of the last equation from r0 to r taking into account that ϑ(1) = 0 at r = r0 yields

ϑ(1) =
1
r

r∫
r0

G̃(r, ϕ) dr.

We note that in the case of a vortex layer of finite thickness, the functions P (1)
3 and P (1)

2 vanish at r greater
than a certain r1. It is possible to show that at such r, the expression for the angle ϑ(1) becomes simpler and takes
the form

ϑ(1) = C1(ϕ)/r + C2(ϕ).

It should be noted that the interaction region is unbounded along r. The last circumstance is the reason for
the nonuniformity of the asymptotic expansion obtained. To prove the last assertion, it is necessary to study the
system obtained by substituting series (2.1) into (1.1) and retaining terms with δ2. After integration of this system,
terms of the form D(ϕ) ln r, increasing without limit as r → ∞, appear in the expressions for the functions ϑ(2),
A(2), and P (2)

1 .
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3. Constructing a Uniformly Adequate Expansion by the Strained Coordinate Method. To
obtain a uniformly adequate first approximation, we use the strained coordinate method [10, 11]. Let us convert
from (r, ϕ) to the strained variables (s, t) using the formulas

ϕ = s+ δϕ2(s, t) + . . . , r = t.

This conversion does not change the form of the functions P (1)
3 (s, t) and P

(1)
2 (s, t) — they are still defined by

formulas (2.4) and (2.5) in which r and ϕ are replaced by t and s, respectively. Changes should occur in the
expressions for ϑ(1) and A(1) obtained by expanding these functions along the characteristics of the first family.

Indeed, in the new coordinates the equation for ϑ(1) is written as

∂ϑ(1)

∂t
− ∂ϕ2

∂t

∂ϑ(0)

∂s
− 1
t

∂ϑ(0)

∂s

(
ϕ2 − ϑ(1) +

A(1)

(M(0))2

)
= αϑ2(ϕ)P (1)

2 .

If ϕ2 is chosen from the condition

∂ϕ2

∂t
+

1
t

(
ϕ2 − ϑ(1) +

A(1)

(M(0))2

)
= 0, (3.1)

then the equation for ϑ(1) takes the form

∂ϑ(1)

∂t
= − P

(1)
2

cos (ϑ(0) − α(0))
(A(0))2

γ(M(0))4
.

As can be seen from the last equality, the function ϑ(0) + δ ϑ(1), as a first approximation, remains constant on the
rays s = const at t > r1. In addition, for s = ϕ0, the function P

(1)
2 = 0, so that along the characteristic OA3, the

examined function is identically equal to zero.
Condition (3.1) can be written as

∂

∂t
(tϕ2) = ϑ(1) − A(1)

(M(0))2
=⇒ ϕ2(s, t) =

1
t
ϕ̃(s) +

1
t

t∫
t0

[
ϑ(1) − A(1)

(M(0))2

]
dt.

Since at t = t0, we have flow in the simple wave with ϕ = s, the arbitrary function ϕ̃(s) in the last equality should
be taken identically equal to zero. Then,

ϕ = s+
δ

t

t∫
t0

[
ϑ(1) − A(1)

(M(0))2

]
dt+ . . . . (3.2)

Continuing the expansion, in the next step we obtain the following equation for ϑ(2):

∂ϑ(2)

∂t
− ∂ϕ3

∂t

∂ϑ(0)

∂s
− 1
t

∂ϑ(0)

∂s

(
ϕ3 − ϑ(2) +

A(2)(M(0))2 −A(0)A(1)

(M(0))4

)
= . . . .

It is easy to show that the choice of the function ϕ3(s, t) such that

∂

∂t
(tϕ3) = ϑ(2) − A(2)(M(0))2 −A(0)A(1)

(M(0))4

provides for the condition of consistency of the function ϑ(2) on the rays s = const at t > r1 and the absence of
secular summands in the next terms of the expansion.

We note that as in the problem of supersonic flow around a thin profile [10], the lines s = const can be
interpreted physically as characteristics of the first family refined in view of the next approximations. Indeed,

dϕ

dr
=

1
r

tan (ϕ− ϑ− α).

To a first approximation, we have

dϕ

dr
=

1
r

(
− ϑ(1) +

A(1)

(M(0))2

)
=⇒ ϕ = const +

δ

r

r∫
r0

[
ϑ(1) − A(1)

(M(0))2

]
dr.

It is obvious that using s as the integration constant, we obtain equality (3.2).

193



t

2

3

3.1

3.3

3.5

3.7

3.9
M

7 9 11 13 15 17

1

t
_0.16

_0.12

_0.08

_0.04
j

2 6 10 14 18

2

1

3

Fig. 2 Fig. 3

Fig. 2. Distribution of the Mach number along the characteristics of the first family.

Fig. 3. Distribution of the slope of the velocity vector along the characteristics of the first family.
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Fig. 4. Curve of ϑ(t) for M1 = 3 and M2 = 3.3 (comparison of analytical and numerical data).

Fig. 5. Diagram of flow behind the closing characteristic of the centered wave.

Figures 2 and 3 give calculated distributions of the Mach number M(t) and the angle ϑ(t) along the char-
acteristics of the first family. The calculations were performed for angles ϑw1 = 3, 6, and 9◦ (curves 1, 2 and 3,
respectively). Before interaction, the Mach number in the shear layer changes smoothly from M1 = 3 to M2 = 3.3
(δ = 0.1) under a cubic law. The solid curves correspond to values calculated numerically using the method of
characteristics, and the dashed curves, to data obtained using the first two terms of the asymptotic expansion. In
Fig. 4, curves 2 from Fig. 3 are scaled up. As is evident from the figures, even the first approximation gives a fairly
good fit to the precise calculation — the maximum relative error of the Mach number is about 10−4.

4. Constructing a Solution in the Region behind the Closing Characteristic of the Wave.
Behind the last characteristic OB3 of the wave w1, there is interaction of the weakly swirled layer B1E1B2E2 with
the weakly curved flow in the simple noncentered wave F1C1B2D2 (Fig. 5). The intensity of the vortex layer is
characterized by the function P3, and the intensity of the simple wave is characterized by the function P2. On the
characteristic F1B1B2, these functions have order δ, so that

P3P2 = O(δ2), δ → 0.
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Hence, in the region considered, the flow, to a zero approximation, is a plane-parallel irrotational flow, whose
gas-dynamic parameters M(0) and ϑ(0) coincide with the Mach number Mw1 and the angle ϑw1 behind the simple
wave w1. In this case, the functions P (0)

i (i = 1, 2, 3) are equal to zero.
To construct the first approximation, we consider a somewhat more general problem in which all Pi have

the same order of smallness of δ, so that

PiPj = o(Pi) = o(Pj) ∀ i, j = 1, 2, 3, δ → 0.

In this case, the right sides of Eqs. (1.1) for Pi have order O(δ2). Hence, P (1)
i are constant along the

characteristics of the ith family. Let us convert to a coordinate system (x, y) with abscissa parallel to the wall (see
Fig. 5). In this coordinate system, the general solutions of the equations for P (1)

i have the form

P
(1)
1 = f1(x−Aw1y), P

(1)
2 = f2(x+Aw1y), P

(1)
3 = f3(y). (4.1)

The functions fi on the right sides of these relations are determined from the corresponding boundary conditions.
Using expressions (4.1), it is easy to write the general form of the functions ϑ(1) and A(1):

ϑ(1) = − 1
2γM2

w1

[F1(x−Aw1y) + F2(x+Aw1y)], A(1) =
µw1

(1 + ε)Aw1

[
F3(y) +

F1(x−Aw1y)− F2(x+Aw1y)
2Aw1

]
,

Fi =

ξi∫
ξ0i

fi(s) ds, ξ1 = x−Aw1y, ξ2 = x+Aw1y, ξ3 = y.

Reverting to the problem considered, we note that the functions P (1)
1 , P (1)

2 , and P (1)
3 are different from zero

in the regions C1H1D2H2, F1C1B2D2, and B1E1B2E2, respectively. Moreover, the functions P (1)
2 and P (1)

3 , whose
values do not change along the characteristics of the second and third families, respectively, are determined from
the initial conditions on the segments F1B2 and B1B2 of the closing characteristic of the wave w1. In the region
P

(1)
1 , the values of the function C1H1D2H2 are determined from the condition that the angle ϑ on the wall is equal

to zero:
∂ϑ

∂x

∣∣∣
y=0

= 0 =⇒ P
(1)
1 (x) = −P (1)

2 (x) =⇒ P
(1)
1 (ξ1) = −P (1)

2 (ξ2).

As a consequence, the function ϑ(1) is equal to zero in the triangle OF1C1 and in the region behind the characteristic
D2H2, and it is constant along the characteristics of the second and first families in the regions F1C1B2R and
RH1D2H2, respectively. In the region B2B3RH1, this function has a constant value, and in the triangle C1RD2,
it varies along any direction. The behavior of the function A(1) in the indicated regions is considered similarly. In
particular, above the weak discontinuity B2E2, this function is constant along the characteristics of the first family,
and behind the weak discontinuity D2H2, it is constant along the lines y = const.

To this point, the solution was constructed by formal expansion of the functions in series in the small
parameter of the problem. The solutions obtained by this expansion are inadequate at considerable distances from
the interaction region. To prove this assertion, we write the equation for ϑ(2) obtained after substitution of series
(2.1) into system (1.1) and retention of terms at δ2:

∂ϑ(2)

∂y
+Aw1

∂ϑ(2)

∂x
= −M2

w1

Aw1
ϑ(1) +

1
Aw1

A(1).

Taking into account that the right side of this equation is constant in the region considered, we obtain

ϑ(2) =
[
− M2

w1

Aw1
ϑ(1) +

1
Aw1

A(1)
]
y + f̃(x−Aw1y).

The presence of a secular term on the right side indicates that the expansion obtained is uniform over y.
It should be noted that the interaction region is unbounded along both y and on x. However, along x, the

expansion is uniform. This follows from the fact that behind the characteristic D2H2, the angle ϑ is equal to zero
in both the zero and first approximations, so that after integration along the streamlines, the derivatives on the left
side df/dν3 do not contain secular terms.

Taking into coconut the aforesaid, we introduce the strained coordinates s and t by the formulas

x−Aw1y = s+ δϕ2(s, t) + . . . , Aw1y = t.
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Then, for the function ϑ in the first and second approximations, we obtain

δ1:
∂ϑ(1)

∂t
= 0 =⇒ ϑ(1) = ϑ(1)(s),

δ2:
∂ϑ(2)

∂t
− ∂ϑ(1)

∂s

1
Aw1

[
Aw1

∂ϕ2

∂t
+ ϑ(1)M2

w1 −A(1)
]

= 0.

Choosing ϕ2(s, t) from condition
Aw1

∂ϕ2

∂t
= −ϑ(1)M2

w1 +A(1)

so that

ϕ2 = f(s)− 1
Aw1

t∫
0

[ϑ(1)M2
w1 −A(1)] dt, (4.2)

we have
∂ϑ(2)

∂t
= 0 =⇒ ϑ(2) = ϑ(2)(s).

As noted above, behind the streamline B2E2 the functions ϑ(1) and A(1) do not vary along the characteristics
of the first family, i.e., they depend only on the variable s. Designating

g(s) :=
1
Aw1

t0∫
0

[
ϑ(1)M2

w1 −A(1)
]
dt,

where t0 is the value of t on the streamline B2E2, we choose the function f(s) in formula (4.2) such that f(s) = g(s).
With this choice of f(s), the function ϕ(s) above the line B2E2 is equal to

ϕ(s) = Φ(s)(t− t0), Φ(s) =
A(1)(s)− ϑ(1)(s)M2

w1

Aw1
=

M2
w1F

(1)
1 (s)

2(1 + ε)A3
w1

and the relationship between the new and old variables takes the form

y = t/Aw1, x = t+ s+ δΦ(s)(t− t0). (4.3)

5. Formation of a Shock in the Wave Reflected from the Wall. Under particular vorticity distribu-
tions, the reflected wave F1C1B2D2 can be a compression wave. The reflection from the wall does not change the
type of wave, so that the reflected wave C1H1D2H2 is also a compression wave. In this case, at a distance from the
wall of about 1/δ, the neighboring characteristics of the first family intersect and a shock is formed in the flow. At
the point of intersection of the characteristics, the Jacobian of the map (4.3) is equal to zero. Using (4.3), it is easy
to obtain the condition of equality of the Jacobian to zero:

t = t0 −
2(1 + ε)A3

w1

δM2
w1F

′
1(s)

= t0 −
2(1 + ε)A3

w1

δM2
w1P

(1)
1 (s)

. (5.1)

On the plane (s, t), relation (5.1) specifies a certain curve t = td(s) (curve 1 in Fig. 6), whose shape is defined
by the function P

(1)
1 (s). The last function is continuous, and in the region [s1, s2] bounded by the characteristics

C1H1 and D2H2, it is different from zero. Hence, these characteristics are oblique asymptotes for the curve of td(s).
If the function P

(1)
1 (s) has roots at the interior points of the interval (s1, s2), then the curve of td(s) has several

branches separated by oblique asymptotes parallel to C1H1 and D2H2. We are interested only in the parts of the
curve that lie in the half-plane t > 0, i.e., the intervals of variation of s for which P

(1)
1 (s) < 0. On these intervals,

the global maximum points of the function P (1)
1 (s) correspond to the points of the curve the least distant from the

wall. At these points, there is origin of the shock.
We assume that in the neighborhood of one of such points — the point (sc, tc) — the function P (1)

1 (s) ∈ C1

and has a second derivative. Let us show that in the neighborhood (sc, tc), the curve td(s) has the shape of a
semicubic parabola. Indeed, locally,

Φ(s) = Φ(sc) + Φ′(s)(s− sc) + Φ′′′(s)(s− sc)3/6.

We substitute this expression into (4.3):

x = t+ s+ δ(t− t0)(Φ(sc) + Φ′(s)(s− sc) + Φ′′′(s)(s− sc)3/6). (5.2)
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Fig. 6. Formation of a shock in the wave reflected from the wall.

On the plane (x, t), the last equality specifies a family of straight lines that depend on s as on a parameter. The
equation of the envelope of this family can be obtained by differentiating (5.2) with respect to s:

0 = 1 + δ(t− t0)(Φ′(s) + Φ′′′(s)(s− sc)2/2). (5.3)

Excluding the parameter s from system (5.2), (5.3), we obtain the desired equation of the envelope. In this system,
we convert to new variables:

t∗ = t− t0 + 1/(δΦ′(sc)), x∗ = x− t− sc − δΦ(sc)(t− t0), s∗ = s− sc.

In these variables, the system becomes

t∗ =
cs2∗

b(b+ cs2∗)
, x∗ =

2
3
bt∗s∗, b = δΦ′(sc), c =

1
2
δΦ′′′(sc).

For small s∗, the last equalities can be written as

t∗ =
c

b2
s2∗ +O(s4∗), x∗ =

1
3

Φ′′′(sc)
Φ′(sc)

s3∗ +O(s5∗).

Hence, in the neighborhood of the maximum point, the envelope of the family of straight lines indeed has the shape
of a semicubic parabola.

We now construct a function g(t) that describes the shape of the shock (curve 2 in Fig. 6). At any point of
the shock with the coordinates (t, g(t)), equalities (4.3) are valid. Hence,

g(t) = t+ s1 + δΦ(s1)(t− t0) = t+ s2 + δΦ(s2)(t− t0). (5.4)

Here s1 and s2 are the values of the parameter s on the sides of the discontinuity. It is easy to show that in the
case of a weak discontinuity, the slope σ of the shock to the incoming flow streamline is linked to the angle β of
flow rotation at the shock and to slopes α1.2 of the characteristics in the flow ahead of and behind the shock by the
relation

cot σ = (cot α1 + cot (α2 + β))/2 = (A1 + cot (α2 + β))/2.

Indeed, it is possible to show that

cot σ = A1 −
A2

1 + 1
2(1 + ε)A1

z +
(A2

1 + 1)(3A2
1 − 1)

8(1 + ε)2A3
1

z2 +O(z3), z → 1,

cot (α2 + β) = A1 −
A2

1 + 1
(1 + ε)A1

z +
(A2

1 + 1)(3A2
1 − 1)

2(1 + ε)2A3
1

z2 +O(z3), z → 1.

Hence, with accuracy to terms of the second order in z, the shock bisects the angle between the characteristics:

dg(t)
dt

=
1
2

[dx(s1)
dt

+
dx(s2)
dt

]
= 1 +

δ

2
[Φ(s1) + Φ(s2)]. (5.5)
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Relations (5.4) and (5.5) allow us to determine the desired functions g(t), s1(t), and s2(t) [20]. Indeed, we differen-
tiate (5.4) wit respect to t and equate the expressions obtained and (5.5):

dg(t)
dt

= 1 +
δ

2
[Φ(s1) + Φ(s2)] = 1 + s′1(t) + δΦ(s1) + δΦ′(s1)s′1(t)(t− t0)

= 1 + s′2(t) + δΦ(s2) + δΦ′(s2)s′2(t)(t− t0).

For conservation of symmetry, we take the arithmetical mean of the last two expressions and eliminate t− t0 from
them using the following relation resulting from (5.4)

t− t0 = − s2 − s1
δ(Φ(s2)− Φ(s1))

. (5.6)

As a result, we obtain the equality

(s′1 + s′2)(Φ(s2)− Φ(s1)) = (s2 − s1)(Φ′(s1)s′1 + Φ′(s2)s′2),

which can be written as

s2 − s1
2

(Φ(s2) + Φ(s1)) =

s2∫
s1

Φ(s) ds = G(s2)−G(s1), G(s) =

s∫
smin

Φ(s) ds. (5.7)

From formula (5.7) we can find s2 = s2(s1) and then, using (5.6), the desired function g(t).
The authors thank V. R. Meshkov for useful discussions and help in numerical calculations.
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